Cosmic-Ray Acceleration of Galactic Outflows in Multiphase Gas

Author:

Armillotta LuciaORCID,Ostriker Eve C.ORCID,Kim Chang-GooORCID,Jiang 姜 Yan-Fei 燕飞ORCID

Abstract

Abstract We investigate the dynamical interaction between cosmic rays (CRs) and the multiphase interstellar medium (ISM) using numerical magnetohydrodynamic (MHD) simulations with a two-moment CR solver and TIGRESS simulations of star-forming galactic disks. We previously studied the transport of CRs within TIGRESS outputs using a “postprocessing” approach, and we now assess the effects of the MHD backreaction to CR pressure. We confirm our previous conclusion that there are three quite different regimes of CR transport in multiphase ISM gas, while also finding that simulations with “live MHD” predict a smoother CR pressure distribution. The CR pressure near the midplane is comparable to other pressure components in the gas, but the scale height of CRs is far larger. Next, with a goal of understanding the role of CRs in driving galactic outflows, we conduct a set of controlled simulations of the extraplanar region above z = 500 pc, with imposed boundary conditions flowing from the midplane into this region. We explore a range of thermal and kinematic properties for the injected thermal gas, encompassing both hot, fast-moving outflows, and cooler, slower-moving outflows. The boundary conditions for CR energy density and flux are scaled from the supernova rate in the underlying TIGRESS model. Our simulations reveal that CRs efficiently accelerate extraplanar material if the latter is mostly warm/warm-hot gas, in which CRs stream at the Alfvén speed, and the effective sound speed increases as density decreases. In contrast, CRs have very little effect on fast, hot outflows where the Alfvén speed is small, even when the injected CR momentum flux exceeds the injected MHD momentum flux.

Funder

Simons Foundation

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3