Stellar-mass black holes in young massive and open stellar clusters – IV. Updated stellar-evolutionary and black hole spin models and comparisons with the LIGO-Virgo O1/O2 merger-event data

Author:

Banerjee Sambaran12ORCID

Affiliation:

1. Helmholtz-Instituts für Strahlen und Kernphysik (HISKP), Nussallee 14-16, D-53115 Bonn, Germany

2. Argelander-Institut für Astronomie (AIfA), Auf dem Hügel 71, D-53121 Bonn, Germany

Abstract

ABSTRACT I present a set of long-term, direct, relativistic many-body computations of model dense stellar clusters with up-to-date stellar-evolutionary, supernova (SN), and remnant natal-kick models, including pair instability and pulsation pair instability supernova (PSN and PPSN), using an updated version of ${\rm{\small NBODY7}}$  N-body simulation program. The N-body model also includes stellar evolution-based natal spins of black holes (BHs) and treatments of binary black hole (BBH) mergers based on numerical relativity. These, for the first time in a direct N-body simulation, allow for second-generation BBH mergers. The set of 65 evolutionary models have initial masses $10^4{\!-\!}10^5\, \mathrm{M}_{\odot }$, sizes 1–3 pc, metallicity 0.0001–0.02, with the massive stars in primordial binaries and they represent young massive clusters (YMC) and moderately massive open clusters (OC). Such models produce dynamically paired BBH mergers that agree well with the observed masses, mass ratios, effective spin parameters, and final spins of the LVC O1/O2 merger events, provided BHs are born with low or no spin but spin-up after undergoing a BBH merger or matter accretion on to it. In particular, the distinctly higher mass, effective spin parameter, and final spin of GW170729 merger event is naturally reproduced, as also the mass asymmetry of the O3 event GW190412. The computed models produce intermediate-mass, $\sim 100\, \mathrm{M}_{\odot }$ BBH mergers with primary mass within the ‘PSN gap’ and also yield mergers involving remnants in the ‘mass gap’. They also suggest that YMCs and OCs produce persistent, Local-Universe GW sources detectable by LISA. Such clusters are also capable of producing eccentric LIGO-Virgo mergers.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3