3D numerical experiment for EUV waves caused by flux rope eruption

Author:

Mei Z X12ORCID,Keppens R3,Cai Q W124ORCID,Ye J12ORCID,Xie X Y124,Li Y12

Affiliation:

1. Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011, P. R. China

2. Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100101, China

3. Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium

4. University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

Abstract

ABSTRACT We present a 3D magnetohydrodynamic numerical experiment of an eruptive magnetic flux rope (MFR) and the various types of disturbances it creates, and employ forward modelling of extreme ultraviolet (EUV) observables to directly compare numerical results and observations. In the beginning, the MFR erupts and a fast shock appears as an expanding 3D dome. Under the MFR, a current sheet grows, in which magnetic field lines reconnect to form closed field lines, which become the outermost part of an expanding coronal mass ejection (CME) bubble. In our synthetic SDO/AIA images, we can observe the bright fast shock dome and the hot MFR in the early stages. Between the MFR and the fast shock, a dimming region appears. Later, the MFR expands so its brightness decays and it becomes difficult to identify the boundary of the CME bubble and distinguish it from the bright MFR in synthetic images. Our synthetic images for EUV disturbances observed at the limb support the bimodality interpretation for coronal disturbances. However, images for disturbances propagating on-disc do not support this interpretation because the morphology of the bright MFR does not lead to circular features in the EUV disturbances. At the flanks of the CME bubble, slow shocks, velocity vortices and shock echoes can also be recognized in the velocity distribution. The slow shocks at the flanks of the bubble are associated with a 3D velocity separatrix. These features are found in our high-resolution simulation, but may be hard to observe as shown in the synthetic images.

Funder

CAS

National Science Foundation of China

European Research Council

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3