Three-dimensional Simulation of Thermodynamics on Confined Turbulence in a Large-scale CME-flare Current Sheet

Author:

Ye JingORCID,Raymond John C.ORCID,Mei ZhixingORCID,Cai QiangweiORCID,Chen YuhaoORCID,Li YanORCID,Lin JunORCID

Abstract

Abstract Turbulence plays a key role in forming the complex geometry of the large-scale current sheet (CS) and fast energy release in a solar eruption. In this paper, we present full 3D high-resolution simulations for the process of a moderate coronal mass ejection (CME) and the thermodynamical evolution of the highly confined CS. Copious elongated blobs are generated owing to tearing and plasmoid instabilities, giving rise to a higher reconnection rate, and undergo the splitting, merging, and kinking processes in a more complex way in 3D. A detailed thermodynamical analysis shows that the CS is mainly heated by adiabatic and numerical viscous terms, and thermal conduction is the dominant factor that balances the energy inside the CS. Accordingly, the temperature of the CS reaches to a maximum of about 20 MK, and the range of temperatures is relatively narrow. From the face-on view in the synthetic Atmospheric Imaging Assembly 131 Å, the downflowing structures with similar morphology to supra-arcade downflows are mainly located between the post-flare loops and loop top, while moving blobs can extend spikes higher above the loop top. The downward-moving plasmoids can keep the twisted magnetic field configuration until the annihilation at the flare loop top, indicating that plasmoid reconnection dominates in the lower CS. Meanwhile, the upward-moving ones turn into turbulent structures before arriving at the bottom of the CME, implying that turbulent reconnection dominates in the upper CS. The spatial distributions of the turbulent energy and anisotropy are addressed, which show a significant variation in the spectra with height.

Funder

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3