AGN anisotropic radiative feedback set by black hole spin

Author:

Ishibashi W1

Affiliation:

1. Physik-Institut, Universitat Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Abstract

ABSTRACT We consider the impact of anisotropic radiation on the active galactic nucleus (AGN) radiative dusty feedback. The radiation pattern originating from the accretion disc is determined by the central black hole (BH) spin. Here we analyse how such BH spin-induced angular dependence affects the dynamics and energetics of the radiation pressure-driven outflows, as well as AGN obscuration and BH accretion. In addition, we explore the effect of a spatially varying dust-to-gas ratio on the outflow propagation. We obtain two distinct trends for high-spin and low-spin objects, providing a direct connection between anisotropic feedback and BH spin. In the case of maximum spin, powerful quasi-spherical outflows can propagate on large scales, at all inclination angles with fairly uniform energetics. In contrast, in the case of zero spin, only weaker bipolar outflows can be driven in the polar directions. As a result, high BH spins can efficiently clear out the obscuring gas from most directions, whereas low BH spins can only remove dusty gas from the polar regions, hence also determining the overall AGN obscuration geometry. Due to such anisotropic feedback, high BH spins can prevent accretion of gas from most directions (except in the equatorial plane), while low BH spins allow inflows to proceed from a wider range of directions. This may have important implications for the BH growth in the early Universe. Anisotropic radiative dusty feedback, ruled by the BH spin, may thus play a major role in shaping AGN evolution over cosmic time.

Funder

University of Zurich

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3