The Role of Infrared Radiation Pressure in Shaping Dusty Winds in AGNs

Author:

Venanzi MartaORCID,Hönig SebastianORCID,Williamson DavidORCID

Abstract

Abstract The detection of dusty winds dominating the infrared emission of active galactic nuclei (AGNs) on parsec scales has revealed the limitations of traditional radiative transfer models based on a toroidal distribution of dusty gas. A new, more complex, dynamical structure is emerging and the physical origin of such dusty winds has to be critically assessed. We present a semi-analytical model to test the hypothesis of radiatively accelerated dusty winds launched by the AGN and by the heated dust itself. The model consists of an AGN and an infrared radiating dusty disk, the latter being the primary mass reservoir for the outflow. We calculate the trajectories of dusty gas clumps in this environment, accounting for both gravity and the AGN radiation as well as the re-radiation by the hot, dusty gas clouds themselves. We find that the morphology consists of a disk of material that orbits with sub-Keplerian velocities and a hyperboloid polar wind launched at the inner edge of the dusty disk. This is consistent with high-angular resolution infrared and sub-mm observations of some local Seyfert AGN. The strength of the wind and its orientation depend on the Eddington ratio and the column density of the dusty clumps, which is in agreement with proposed radiation regulated obscuration models developed for the X-ray obscuring material around AGNs.

Funder

ERC

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3