Mimicking the halo–galaxy connection using machine learning

Author:

de Santi Natalí S M1ORCID,Rodrigues Natália V N1,Montero-Dorta Antonio D2ORCID,Abramo L Raul1,Tucci Beatriz13ORCID,Artale M Celeste456ORCID

Affiliation:

1. Instituto de Física, Universidade de São Paulo , R. do Matão 1371, 05508-090 São Paulo, SP, Brazil

2. Departamento de Física, Universidad Técnica Federico Santa María , Casilla 110-V, Avda. España 1680, Valparaíso, Chile

3. Max-Planck-Institut für Astrophysik , Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany

4. Institut für Astro- und Teilchenphysik, Universität Innsbruck , Technikerstrasse 25/8, 6020 Innsbruck, Austria

5. Department of Physics and Astronomy, Purdue University , 525 Northwestern Avenue, West Lafayette, IN 47907, USA

6. Physics and Astronomy Department Galileo Galilei, University of Padova , Vicolo dell’Osservatorio 3, I-35122 Padova, Italy

Abstract

ABSTRACT Elucidating the connection between the properties of galaxies and the properties of their hosting haloes is a key element in galaxy formation. When the spatial distribution of objects is also taken under consideration, it becomes very relevant for cosmological measurements. In this paper, we use machine-learning techniques to analyse these intricate relations in the IllustrisTNG300 magnetohydrodynamical simulation, predicting baryonic properties from halo properties. We employ four different algorithms: extremely randomized trees, K-nearest neighbours, light gradient boosting machine, and neural networks, along with a unique and powerful combination of the results from all four approaches. Overall, the different algorithms produce consistent results in terms of predicting galaxy properties from a set of input halo properties that include halo mass, concentration, spin, and halo overdensity. For stellar mass, the Pearson correlation coefficient is 0.98, dropping down to 0.7–0.8 for specific star formation rate (sSFR), colour, and size. In addition, we apply, for the first time in this context, an existing data augmentation method, synthetic minority oversampling technique for regression with Gaussian noise (SMOGN), designed to alleviate the problem of imbalanced data sets, showing that it improves the overall shape of the predicted distributions and the scatter in the halo–galaxy relations. We also demonstrate that our predictions are good enough to reproduce the power spectra of multiple galaxy populations, defined in terms of stellar mass, sSFR, colour, and size with high accuracy. Our results align with previous reports suggesting that certain galaxy properties cannot be reproduced using halo features alone.

Funder

FAPESP

CNPq

CAPES

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3