The white dwarf planet WD J0914+1914 b: barricading potential rocky pollutants?

Author:

Veras Dimitri12ORCID

Affiliation:

1. Centre for Exoplanets and Habitability, University of Warwick, Coventry CV4 7AL, UK

2. Department of Physics, University of Warwick, Coventry CV4 7AL, UK

Abstract

Abstract An ice giant planet was recently reported orbiting white dwarf WD J0914+1914 at an approximate distance of 0.07 au. The striking non-detection of rocky pollutants in this white dwarf’s photosphere contrasts with the observations of nearly every other known white dwarf planetary system. Here, I analyse the prospects for exterior extant rocky asteroids, boulders, cobbles, and pebbles to radiatively drift inward past the planet due to the relatively high luminosity ($0.1 \, \mathrm{L}_{\odot }$) of this particularly young (13 Myr) white dwarf. Pebbles and cobbles drift too slowly from Poynting–Robertson drag to bypass the planet, but boulders and asteroids are subject to the much stronger Yarkovsky effect. In this paper, I (i) place lower limits on the time-scales for these objects to reach the planet’s orbit, (ii) establish 3 m as the approximate limiting radius above which a boulder drifts too slowly to avoid colliding with the planet, and (iii) compute bounds on the fraction of boulders that succeed in traversing mean motion resonances and the planet’s Hill sphere to eventually pollute the star. Overall, I find that the planet acts as a barrier against rather than a facilitator for radiatively driven rocky pollution, suggesting that future rocky pollutants would most likely originate from distant scattering events.

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Evolution and Delivery of Rocky Extra-Solar Materials to White Dwarfs;Reviews in Mineralogy and Geochemistry;2024-07-01

2. Polluting white dwarfs with Oort cloud comets;Monthly Notices of the Royal Astronomical Society;2024-04-04

3. Post-main sequence thermal evolution of planetesimals;Monthly Notices of the Royal Astronomical Society;2023-10-12

4. Planetesimals drifting through dusty and gaseous white dwarf debris discs: Types I, II and III-like migration;Monthly Notices of the Royal Astronomical Society;2023-06-14

5. High-resolution resonant portraits of a single-planet white dwarf system;Monthly Notices of the Royal Astronomical Society;2022-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3