Long-term forcing of the Sun’s coronal field, open flux, and cosmic ray modulation potential during grand minima, maxima, and regular activity phases by the solar dynamo mechanism

Author:

Dash Soumyaranjan1ORCID,Nandy Dibyendu12ORCID,Usoskin Ilya3ORCID

Affiliation:

1. Center of Excellence in Space Sciences India, Indian Institute of Science Education and Research Kolkata , Mohanpur 741246, West Bengal , India

2. Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata , Mohanpur 741246, West Bengal , India

3. Space Physics and Astronomy Research Unit and Sodankyla Geophysical Observatory, University of Oulu , 90014 , Finland

Abstract

ABSTRACT Magnetic fields generated in the Sun’s interior by the dynamo mechanism drive solar activity over a range of time-scales. Direct sunspot observations exist for a few centuries; reconstructed variations based on cosmogenic isotopes in the solar open flux and cosmic ray flux exist over thousands of years. While such reconstructions indicate the presence of extreme solar activity fluctuations in the past, causal links between millennia scale dynamo activity, consequent coronal field, solar wind, open flux and cosmic ray flux variations remain elusive; a lack of coronal field observations compounds this issue. By utilizing a stochastically forced solar dynamo model and potential field source surface extrapolation, we perform long-term simulations to illuminate how dynamo generated magnetic fields govern the structure of the solar corona and the state of the heliosphere – as indicated by variations in the open flux and cosmic ray modulation potential. We establish differences in the nature of the large-scale structuring of the solar corona during grand maximum, minimum, and regular solar activity phases and simulate how the open flux and cosmic ray modulation potential vary across these different phases of activity. We demonstrate that the power spectrum of simulated and observationally reconstructed solar open flux time series are consistent with each other. Our study provides the theoretical foundation for interpreting long-term solar cycle variations inferred from cosmogenic isotope based reconstructions and establishes causality between solar internal variations to the forcing of the state of the heliosphere.

Funder

Ministry of Education, Government of India

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3