Abstract
Abstract
The amplitude of the 11 yr solar cycle is well known to be subject to long-term modulation, including sustained periods of very low activity known as Grand Minima. Stable long-period cycles found in proxies of solar activity have given new momentum to the debate about a possible influence of the tiny planetary tidal forcing. Here, we study the solar cycle by means of a simple zero-dimensional dynamo model, which includes a delay caused by meridional circulation as well as a quenching of the α-effect at toroidal magnetic fields exceeding an upper threshold. Fitting this model to the sunspot record, we find a set of parameters close to the bifurcation point at which two stable oscillatory modes emerge. One mode is a limit cycle resembling normal solar activity including a characteristic kink in the decaying limb of the cycle. The other mode is a weak sub-threshold cycle that could be interpreted as Grand Minimum activity. Adding noise to the model, we show that it exhibits Stochastic Resonance, which means that a weak external modulation can toss the dynamo back and forth between these two modes, whereby the periodicities of the modulation get strongly amplified.
Funder
Swiss Data Science Center
Spanish Science Ministry
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献