Affiliation:
1. Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University , Nanning 530004, China
Abstract
AbstractDetection of kilonova AT2017gfo proves that binary neutron star mergers can be the dominant contributor to the production of heavy elements in our Universe. Neutrinos from the radioactive decay of heavy elements would be the most direct messengers of merger ejecta. Based on r-process nucleosynthesis calculations, we study the neutrinos emitted from the β-decay of r-process elements and find that about half of the β-decay energy is carried away by neutrinos. The neutrino energy generation rate remains approximately constant at the early stage (t ≲ 1 s) and then decays as a power-law function with an index of −1.3. This powers a short-lived fast neutrino burst with a peak luminosity of ∼1049 erg s−1 in the early stage. Observation of neutrinos from neutron star mergers will be an important step towards understanding the properties of extremely neutron-rich nuclei and r-process nucleosynthesis, since the dominant contribution to the early time neutrino production is from nuclides near the r-process path. The typical neutrino energy is ≲8 MeV, which is within the energy ranges of the water-Cherenkov neutrino detectors such as Super-Kamiokande and future Hyper-Kamiokande, but the extremely low neutrino flux and event rate in our local Universe challenge the detection of the neutrino flashes.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献