Improved diagnostic performance of insertable cardiac monitors by an artificial intelligence-based algorithm

Author:

Crespin Eliot1ORCID,Rosier Arnaud12,Ibnouhsein Issam1ORCID,Gozlan Alexandre1,Lazarus Arnaud3,Laurent Gabriel4ORCID,Menet Aymeric5ORCID,Bonnet Jean-Luc1,Varma Niraj6ORCID

Affiliation:

1. Implicity SAS , Paris , France

2. Jacques Cartier Private Hospital , Massy , France

3. Service de rythmologie interventionnelle, Clinique Ambroise Paré , Neuilly sur Seine , France

4. Service de rythmologie et Insuffisance Cardiaque, Centre Hospitalier Universitaire , Dijon , France

5. Département de Cardiologie, Groupe Hospitalier de l'Institut Catholique de Lille , Lomme , France

6. Department of Cardiovascular Medicine, Cleveland Clinic , Cleveland, OH , USA

Abstract

Abstract Aims The increasing use of insertable cardiac monitors (ICM) produces a high rate of false positive (FP) diagnoses. Their verification results in a high workload for caregivers. We evaluated the performance of an artificial intelligence (AI)-based ILR-ECG Analyzer™ (ILR-ECG-A). This machine-learning algorithm reclassifies ICM-transmitted events to minimize the rate of FP diagnoses, while preserving device sensitivity. Methods and results We selected 546 recipients of ICM followed by the Implicity™ monitoring platform. To avoid clusterization, a single episode per ICM abnormal diagnosis (e.g. asystole, bradycardia, atrial tachycardia (AT)/atrial fibrillation (AF), ventricular tachycardia, artefact) was selected per patient, and analyzed by the ILR-ECG-A, applying the same diagnoses as the ICM. All episodes were reviewed by an adjudication committee (AC) and the results were compared. Among 879 episodes classified as abnormal by the ICM, 80 (9.1%) were adjudicated as ‘Artefacts’, 283 (32.2%) as FP, and 516 (58.7%) as ‘abnormal’ by the AC. The algorithm reclassified 215 of the 283 FP as normal (76.0%), and confirmed 509 of the 516 episodes as abnormal (98.6%). Seven undiagnosed false negatives were adjudicated as AT or non-specific abnormality. The overall diagnostic specificity was 76.0% and the sensitivity was 98.6%. Conclusion The new AI-based ILR-ECG-A lowered the rate of FP ICM diagnoses significantly while retaining a > 98% sensitivity. This will likely alleviate considerably the clinical burden represented by the review of ICM events.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3