Biomechanical issues of tissue-engineered constructs for articular cartilage regeneration: in vitro and in vivo approaches

Author:

Cipollaro Lucio12,Ciardulli Maria Camilla2,Porta Giovanna Della2,Peretti Giuseppe M34,Maffulli Nicola1256

Affiliation:

1. Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy

2. Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy

3. IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy

4. Department of Biomedical Sciences for Health, University of Milan, via Mangiagalli 31, 20133, Milan, Italy

5. Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, London E1 4DG, Queen Mary University of London, London, UK

6. Institute of Science and Technology in Medicine, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, UK

Abstract

Abstract Background Given the limited regenerative capacity of injured articular cartilage, the absence of suitable therapeutic options has encouraged tissue-engineering approaches for its regeneration or replacement. Sources of data Published articles in any language identified in PubMed and Scopus electronic databases up to August 2019 about the in vitro and in vivo properties of cartilage engineered constructs. A total of 64 articles were included following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Areas of agreement Regenerated cartilage lacks the biomechanical and biological properties of native articular cartilage. Areas of controversy There are many different approaches about the development of the architecture and the composition of the scaffolds. Growing points Novel tissue engineering strategies focus on the development of cartilaginous biomimetic materials able to repair cartilage lesions in association to cell, trophic factors and gene therapies. Areas timely for developing research A multi-layer design and a zonal organization of the constructs may lead to achieve cartilage regeneration.

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3