Analysis of Expressed Sequence Tags From Two Starvation, Time-of-Day-Specific Libraries of Neurospora crassa Reveals Novel Clock-Controlled Genes

Author:

Zhu Hua1,Nowrousian Minou2,Kupfer Doris1,Colot Hildur V2,Berrocal-Tito Gloria2,Lai Hongshing1,Bell-Pedersen Deborah3,Roe Bruce A1,Loros Jennifer J2,Dunlap Jay C2

Affiliation:

1. Department of Chemistry and Biochemistry, Advanced Center for Genome Technology, University of Oklahoma, Norman, Oklahoma 73019

2. Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755

3. Department of Biology, Biological Sciences, Texas A&M University, College Station, Texas 77843

Abstract

Abstract In an effort to determine genes that are expressed in mycelial cultures of Neurospora crassa over the course of the circadian day, we have sequenced 13,000 cDNA clones from two time-of-day-specific libraries (morning and evening library) generating ∼20,000 sequences. Contig analysis allowed the identification of 445 unique expressed sequence tags (ESTs) and 986 ESTs present in multiple cDNA clones. For ∼50% of the sequences (710 of 1431), significant matches to sequences in the National Center for Biotechnology Information database (of known or unknown function) were detected. About 50% of the ESTs (721 of 1431) showed no similarity to previously identified genes. We hybridized Northern blots with probes derived from 26 clones chosen from contigs identified by multiple cDNA clones and EST sequences. Using these sequences, the representation of genes among the morning and evening sequences, respectively, in most cases does not reflect their expression patterns over the course of the day. Nevertheless, we were able to identify four new clock-controlled genes. On the basis of these data we predict that a significant proportion of the expressed Neurospora genes may be regulated by the circadian clock. The mRNA levels of all four genes peak in the subjective morning as is the case with previously identified ccgs.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3