Studies on the rate and site-specificity of P element transposition.

Author:

Berg C A,Spradling A C

Abstract

Abstract A single genetically marked P element can be efficiently mobilized to insertionally mutagenize the Drosophila genome. We have investigated how the structure of the starting element and its location along the X chromosome influenced the rate and location of mutations recovered. The structure of two P[rosy+] elements strongly affected mobilization by the autonomous "Jumpstarter-1" element. Their average transposition rates differed more than 12-fold, while their initial chromosomal location had a smaller effect. The lethal and sterile mutations induced by mobilizing a P[rosy+] element from position 1F were compared with those identified previously using a P[neoR] element at position 9C. With one possible exception, insertion hotspots for one element were frequently also targets of the other transposon. These experiments suggested that the genomic location of a P element does not usually influence its target sites on nonhomologous chromosomes. During the course of these experiments, Y-linked insertions expressing rosy+ were recovered, suggesting that marked P elements can sometimes insert and function at heterochromatic sites.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3