The TERMINAL FLOWER2 (TFL2) Gene Controls the Reproductive Transition and Meristem Identity in Arabidopsis thaliana

Author:

Larsson Annika Sundås1,Landberg Katarina1,Meeks-Wagner D R2

Affiliation:

1. Department of Physiological Botany, Uppsala University, Villav. 6, S-752 36 Uppsala, Sweden

2. Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403

Abstract

Abstract A new mutant of Arabidopsis thaliana that initiates flowering early and terminates the inflorescence with floral structures has been identified and named terminal flower2 (tfl2). While these phenotypes are similar to that of the terminal flower1 (tfl1) mutant, tfl2 mutant plants are also dwarfed in appearance, have reduced photoperiod sensitivity and have a more variable terminal flower structure. Under long-day and short-day growth conditions tfl1 tfl2 double mutants terminate the inflorescence without development of lateral flowers; thus, unlike tfl1 single mutants the double mutant inflorescence morphology is not affected by day length. The enhanced phenotype of the double mutant suggests that TFL2 acts in a developmental pathway distinct from TFL1. The complex nature of the tfl2 single mutant phenotype suggests that TFL2 has a regulatory role more global than that of TFL1. Double mutant analysis of tfl2 in combination with mutant alleles of the floral meristem identity genes LEAFY and APETALA1 demonstrates that TFL2 function influences developmental processes controlled by APETALA1, but not those regulated by LEAFY. Thus, the TFL2 gene product appears to have a dual role in regulating meristem activity, one being to regulate the meristem response to light signals affecting the development of the plant and the other being the maintenance of inflorescence meristem identity.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference30 articles.

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3