Affiliation:
1. Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
2. Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
Abstract
Abstract
Studies of a wide variety of organisms have shown that homologous sequences can exert a significant impact on each other, resulting in changes in gene sequence, gene expression, chromatin structure, and global chromosome architecture. Our work has focused on transvection, a process that can cause genes to be sensitive to the proximity of a homologue. Transvection is seen at the yellow gene of Drosophila, where it mediates numerous cases of intragenic complementation. In this article, we describe two approaches that have characterized the process of transvection at yellow. The first entailed a screen for mutations that support intragenic complementation at yellow. The second involved the analysis of 53 yellow alleles, obtained from a variety of sources, with respect to complementation, molecular structure, and transcriptional competence. Our data suggest two ways in which transvection may be regulated at yellow: (1) a transcriptional mechanism, whereby the ability of an allele to support transvection is influenced by its transcriptional competency, and (2) a structural mechanism, whereby the pairing of structurally dissimilar homologues results in conformational changes that affect gene expression.
Publisher
Oxford University Press (OUP)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献