Regulation at Drosophila’s Malic Enzyme highlights the complexity of transvection and its sensitivity to genetic background

Author:

Rzezniczak Teresa Z1,Rzezniczak Mark T1,Reed Bruce H2,Dworkin Ian3,Merritt Thomas J S1

Affiliation:

1. Department of Chemistry & Biochemistry, Laurentian University , Sudbury, ON P3E 2C6 , Canada

2. Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1 , Canada

3. Department of Biology, McMaster University , Hamilton, ON L8S 4K1 , Canada

Abstract

Abstract Transvection, a type of trans-regulation of gene expression in which regulatory elements on one chromosome influence elements on a paired homologous chromosome, is itself a complex biological phenotype subject to modification by genetic background effects. However, relatively few studies have explored how transvection is affected by distal genetic variation, perhaps because it is strongly influenced by local regulatory elements and chromosomal architecture. With the emergence of the “hub” model of transvection and a series of studies showing variation in transvection effects, it is becoming clear that genetic background plays an important role in how transvection influences gene transcription. We explored the effects of genetic background on transvection by performing two independent genome wide association studies (GWASs) using the Drosophila genetic reference panel (DGRP) and a suite of Malic enzyme (Men) excision alleles. We found substantial variation in the amount of transvection in the 149 DGRP lines used, with broad-sense heritability of 0.89 and 0.84, depending on the excision allele used. The specific genetic variation identified was dependent on the excision allele used, highlighting the complex genetic interactions influencing transvection. We focussed primarily on genes identified as significant using a relaxed P-value cutoff in both GWASs. The most strongly associated genetic variant mapped to an intergenic single nucleotide polymorphism (SNP), located upstream of Tiggrin (Tig), a gene that codes for an extracellular matrix protein. Variants in other genes, such transcription factors (CG7368 and Sima), RNA binding proteins (CG10418, Rbp6, and Rig), enzymes (AdamTS-A, CG9743, and Pgant8), proteins influencing cell cycle progression (Dally and Eip63E) and signaling proteins (Atg-1, Axo, Egfr, and Path) also associated with transvection in Men. Although not intuitively obvious how many of these genes may influence transvection, some have been previously identified as promoting or antagonizing somatic homolog pairing. These results identify several candidate genes to further explore in the understanding of transvection in Men and in other genes regulated by transvection. Overall, these findings highlight the complexity of the interactions involved in gene regulation, even in phenotypes, such as transvection, that were traditionally considered to be primarily influenced by local genetic variation.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3