Optimal breeding-value prediction using a sparse selection index

Author:

Lopez-Cruz Marco1ORCID,de los Campos Gustavo234

Affiliation:

1. Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA

2. Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA

3. Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA

4. Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA

Abstract

Abstract Genomic prediction uses DNA sequences and phenotypes to predict genetic values. In homogeneous populations, theory indicates that the accuracy of genomic prediction increases with sample size. However, differences in allele frequencies and linkage disequilibrium patterns can lead to heterogeneity in SNP effects. In this context, calibrating genomic predictions using a large, potentially heterogeneous, training data set may not lead to optimal prediction accuracy. Some studies tried to address this sample size/homogeneity trade-off using training set optimization algorithms; however, this approach assumes that a single training data set is optimum for all individuals in the prediction set. Here, we propose an approach that identifies, for each individual in the prediction set, a subset from the training data (i.e., a set of support points) from which predictions are derived. The methodology that we propose is a sparse selection index (SSI) that integrates selection index methodology with sparsity-inducing techniques commonly used for high-dimensional regression. The sparsity of the resulting index is controlled by a regularization parameter (λ); the G-Best Linear Unbiased Predictor (G-BLUP) (the prediction method most commonly used in plant and animal breeding) appears as a special case which happens when λ = 0. In this study, we present the methodology and demonstrate (using two wheat data sets with phenotypes collected in 10 different environments) that the SSI can achieve significant (anywhere between 5 and 10%) gains in prediction accuracy relative to the G-BLUP.

Funder

Monsanto’s Beachell-Borlaug International Scholarship Program

Dissertation Completion Fellowship

Michigan State University Graduate School

National Institute for Food and Agriculture

USDA

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3