A new approach for selection of transgressive segregants in F3 populations based on selection index and anthocyanin content in cayenne pepper

Author:

Anshori Muhammad Fuad,Musa Yunus,Dungga Novaty Eny,Widiayani Nuniek,Arifin Arfina Sukmawati,Masniawati Andi,Firmansyah Firmansyah,Farid Muh,Dirpan Andi,Amas Azmi Nur Karimah

Abstract

The development of cayenne pepper varieties can be optimized by multiple crossings, transgressive segregant selection based on the selection index, and identification of potential anthocyanins. The study objectives were (1) to develop a transgressive segregation index, and (2) to select transgressive segregation cayenne peppers with high productivity and anthocyanins from F3 multiple cross-generation. The study conducted two experiments at the experimental field, Hasanuddin University, from November 2022 to November 2023. The first experiment implemented an augmented design with a randomized complete block design (RCBD) as an environmental design. The genotypes as treatment consisted of two types: 110 lines of cayenne pepper were not repeated, and the 4 older chili varieties as controls were repeated in each block. All genotypes were categorized and divided into five blocks. The second experiment was the validation of the first trial. There were 13 genotypes tested with RCBD design one factor and repeated three times. Based on the study, developing a semi-objective-based selection index with canopy width, fruit weight, and yield was an innovative and effective approach to selecting F3 transgressive segregants of cayenne pepper. High-yielding transgressive lines were identified as G3-2-7-3, G2.6.9–10, G5-12–1-8, and G4.5.2–12. The G3-2-7-3 line was suggested due to its high yield potential and anthocyanin content. However, the anthocyanin content must be examined more deeply, such as using an omics approach. Nevertheless, these lines are still recommended to be continued in yield testing or crossing to produce hybrid lines that have high yield potential and anthocyanin content.

Publisher

Frontiers Media SA

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3