Abstract
Abstract
The kinetics of the permeases and beta-galactosidases of six lactose operons which had been transduced into a common genetic background from natural isolates of Escherichia coli were investigated. The fitnesses conferred by the operons were determined using chemostat competition experiments in which lactose was the sole growth-limiting factor. The cell wall is demonstrated to impose a resistance to the diffusion of galactosides at low substrate concentrations. A steady state model of the flux of lactose through the metabolic pathway (diffusion, uptake and hydrolysis) is shown to be proportional to fitness. This metabolic model is used to explain why an approximately twofold range in activity among the permease alleles confers a 13% range in fitness, whereas a similar range in activity among alleles of the beta-galactosidase confers a 0.5% range in fitness. This metabolic model implies that selection need not be maximized when a resource is scarce.
Publisher
Oxford University Press (OUP)
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献