Affiliation:
1. Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois 61801
Abstract
Abstract
The Vf locus, derived from the crabapple species Malus floribunda 821, confers resistance to five races of the fungal pathogen Venturia inaequalis, the causal agent of apple scab disease. In our previous research, the Vf locus was restricted to a BAC contig of ∼290 kb covered by five overlapping BAC clones. Here, we report on cloning of the resistance gene(s) present in the Vf BAC contig using a highly reliable and straightforward approach. This approach relies on hybridization of labeled cDNAs to amplified inserts of subclones derived from BAC inserts, followed by recovery of full-size transcripts by rapid amplification of cDNA ends (RACE). A cluster of four resistance paralogs (Vfa1, Vfa2, Vfa3, and Vfa4) was identified in the Vf locus. Vfa1, Vfa2 and Vfa4 had no introns and are predicted to encode proteins characterized with extracellular leucine-rich repeats (LRRs) and transmembrane (TM) domains. However, Vfa3 contains an insertion of 780 bp at the end of the LRR motif, resulting in multiple truncated transcripts. Comparison of Vfa1, Vfa2, and Vfa4 paralogs revealed a high degree of overall homology in their deduced amino acid sequences, while divergences were mainly restricted within LRR domains, including variable LRR units, numerous amino acid substitutions, and several residue deletions/duplications. Differential expression profiles among the four paralogs were observed during leaf development. Vfa1, Vfa2, and Vfa3 were active in immature leaves, but slightly expressed in mature leaves, while Vfa4 was active in immature leaves and was highly expressed in mature leaves.
Publisher
Oxford University Press (OUP)
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献