The CCR4 gene from Saccharomyces cerevisiae is required for both nonfermentative and spt-mediated gene expression.

Author:

Denis C L,Malvar T

Abstract

Abstract Mutations in the yeast CCR4 gene inhibit expression of the glucose-repressible alcohol dehydrogenase (ADH2), as well as other nonfermentative genes, and suppress increased ADH2 expression caused by the cre1 and cre2 alleles. Both the cre1 and ccr4 alleles were shown to affect ADH II enzyme activity by altering the levels of ADH2 mRNA. Mutations in either CRE1 or CRE2 bypassed the inhibition of ADH2 expression caused by delta insertions at the ADH2 promoter which displace the ADH2 activation sequences 336 bp upstream of the TATA element. These cre1 and cre2 effects were suppressible by the ccr4 allele. The cre1 and ccr4 mutations also affected ADH2 expression when all the ADH2 regulatory sequences upstream of the TATA element were deleted. The relationship of the CRE genes to the SPT genes, which when mutated are capable of bypassing the inhibition of HIS4 expression caused by a delta promoter insertion (his4-912 delta allele), was examined. Both the cre1 and cre2 mutations allowed his4-912 delta expression. ccr4 mutations were able to suppress the ability of the cre alleles to increase his4-912 delta expression. CRE2 was shown to be allelic to the SPT6 gene, and CRE1 was found to be allelic to SPT10. We suggest that the CRE genes comprise a general transcriptional control system in yeast that requires the function of the CCR4 gene.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3