The Spt10 GNAT Superfamily Protein Modulates Development, Cell Cycle Progression and Virulence in the Fungal Insect Pathogen, Beauveria bassiana

Author:

Cai Qing,Wang Juan-Juan,Xie Jia-TaoORCID,Jiang Dao-HongORCID,Keyhani Nemat O.

Abstract

Chromatin remodeling is mediated in part by post-translational acetylation/deacetylation modifications of histones. Histone acetyltransferases (HATs), e.g., members of the GNAT/MYST superfamily, activate gene transcription via promotion of euchromatin formation. Here, we characterized a GNAT family HAT, Spt10 (BbSpt10), in the environmentally and economically important fungal insect pathogen, Beauveria bassiana. Targeted gene knockout of BbSpt10 resulted in impaired asexual development and morphogenesis; reduced abilities to utilize various carbon/nitrogen sources; reduced tolerance to heat, fungicides, and DNA damage stress; and attenuated virulence. The ΔBbSpt10 mutant showed disrupted cell cycle development and abnormal hyphal septation patterns. Transcriptome analyses of wild type and ΔBbSpt10 cells revealed the differential expression of 373 genes, including 153 downregulated and 220 upregulated genes. Bioinformatic analyses revealed downregulated genes to be enriched in pathways involved in amino acid metabolism, cellular transportation, cell type differentiation, and virulence, while upregulated genes were enriched in carbon/nitrogen metabolism, lipid metabolism, DNA process, and cell rescue, defense, and virulence. Downregulated virulence genes included hydrophobins, cellular transporters (ABC and MFS multidrug transporters) and cytochrome P450 detoxification genes. These data indicated broad effects of BbSpt10 on fungal development, multi-stress response, and virulence.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Hubei Province

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3