Eukaryotic β-Alanine Synthases Are Functionally Related but Have a High Degree of Structural Diversity

Author:

Gojković Zoran1,Sandrini Michael P B1,Piškur Jure1

Affiliation:

1. Section of Molecular Microbiology, BioCentrum DTU, DK-2800 Lyngby, Denmark

Abstract

Abstract β-Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamyl-β-alanine as the sole nitrogen source and exhibits diminished β-alanine synthase activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has no pyrimidine catabolic pathway, it enabled growth on N-carbamyl-β-alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian β-alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial N-carbamyl amidohydrolases. All three β-alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-β-alanine, but not by uracil. This work establishes S. kluyveri as a model organism for studying pyrimidine degradation and β-alanine production in eukaryotes.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference58 articles.

1. The genome sequence of Drosophila melanogaster;Adams;Science,2000

2. Expression, purification, and characterization of histidine-tagged rat and human flavoenzyme dihydroorotate dehydrogenase;Bader;Protein Express. Purif.,1998

3. Nontoxic and toxic oligopeptides with d-amino acids and unusual residues in Microcystis aeruginosa;Birk;PCC 7806. Arch. Microbiol.,1989

4. Active site of dihydroorotate dehydrogenase A from Lactococcus lactis investigated by chemical modification and mutagenesis;Björnberg;Biochemistry,1997

5. A new family of carbon-nitrogen hydrolases;Bork;Protein Sci.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3