A cosmopolitan inversion facilitates seasonal adaptation in overwintering Drosophila

Author:

Nunez Joaquin C B12ORCID,Lenhart Benedict A1,Bangerter Alyssa1,Murray Connor S1ORCID,Mazzeo Giovanni R1ORCID,Yu Yang1,Nystrom Taylor L1,Tern Courtney1ORCID,Erickson Priscilla A13ORCID,Bergland Alan O1

Affiliation:

1. Department of Biology, University of Virginia , 90 Geldard Drive , Charlottesville, VA 22901, USA

2. Department of Biology, University of Vermont , 109 Carrigan Drive , Burlington, VT 05405, USA

3. Department of Biology, University of Richmond , 138 UR Drive , Richmond, VA 23173, USA

Abstract

Abstract Fluctuations in the strength and direction of natural selection through time are a ubiquitous feature of life on Earth. One evolutionary outcome of such fluctuations is adaptive tracking, wherein populations rapidly adapt from standing genetic variation. In certain circumstances, adaptive tracking can lead to the long-term maintenance of functional polymorphism despite allele frequency change due to selection. Although adaptive tracking is likely a common process, we still have a limited understanding of aspects of its genetic architecture and its strength relative to other evolutionary forces such as drift. Drosophila melanogaster living in temperate regions evolve to track seasonal fluctuations and are an excellent system to tackle these gaps in knowledge. By sequencing orchard populations collected across multiple years, we characterized the genomic signal of seasonal demography and identified that the cosmopolitan inversion In(2L)t facilitates seasonal adaptive tracking and shows molecular footprints of selection. A meta-analysis of phenotypic studies shows that seasonal loci within In(2L)t are associated with behavior, life history, physiology, and morphological traits. We identify candidate loci and experimentally link them to phenotype. Our work contributes to our general understanding of fluctuating selection and highlights the evolutionary outcome and dynamics of contemporary selection on inversions.

Funder

National Institutes of Health

National Science Foundation

University of Virginia

University of Vermont

Jefferson Scholars Foundation

Jane Coffin Childs Memorial Fund for Medical Research

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3