On the Origin of Self-Incompatibility Haplotypes: Transition Through Self-Compatible Intermediates

Author:

Uyenoyama Marcy K1,Zhang Yu1,Newbigin Ed2

Affiliation:

1. Department of Biology, Duke University, Durham, North Carolina 27708-0338

2. School of Botany, University of Melbourne, Victoria 3010, Australia

Abstract

Abstract Self-incompatibility (SI) in flowering plants entails the inhibition of fertilization by pollen that express specificities in common with the pistil. In species of the Solanaceae, Rosaceae, and Scrophulariaceae, the inhibiting factor is an extracellular ribonuclease (S-RNase) secreted by stylar tissue. A distinct but as yet unknown gene (provisionally called pollen-S) appears to determine the specific S-RNase from which a pollen tube accepts inhibition. The S-RNase gene and pollen-S segregate with the classically defined S-locus. The origin of a new specificity appears to require, at minimum, mutations in both genes. We explore the conditions under which new specificities may arise from an intermediate state of loss of self-recognition. Our evolutionary analysis of mutations that affect either pistil or pollen specificity indicates that natural selection favors mutations in pollen-S that reduce the set of pistils from which the pollen accepts inhibition and disfavors mutations in the S-RNase gene that cause the nonreciprocal acceptance of pollen specificities. We describe the range of parameters (rate of receipt of self-pollen and relative viability of inbred offspring) that permits the generation of a succession of new specificities. This evolutionary pathway begins with the partial breakdown of SI upon the appearance of a mutation in pollen-S that frees pollen from inhibition by any S-RNase presently in the population and ends with the restoration of SI by a mutation in the S-RNase gene that enables pistils to reject the new pollen type.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3