Isolation of crt mutants constitutive for transcription of the DNA damage inducible gene RNR3 in Saccharomyces cerevisiae.

Author:

Zhou Z,Elledge S J

Abstract

Abstract Ribonucleotide reductase is an essential enzyme that catalyzes the rate limiting step for production of the deoxyribonucleotides required for DNA synthesis. It is encoded by three genes, RNR1, RNR2 and RNR3, each of which is inducible by agents that damage DNA or block DNA replication. To probe the signaling pathway mediating this DNA damage response, we have designed a general selection system for isolating spontaneous trans-acting mutations that alter RNR3 expression using a chromosomal RNR3-URA3 transcriptional fusion and an RNR3-lacZ reporter plasmid. Using this system, we have isolated 202 independent trans-acting crt (constitutive RNR3 transcription) mutants that express high levels of RNR3 in the absence of DNA damaging agents. Of these, 200 are recessive and fall into 9 complementation groups. In some crt groups, the expression of RNR1 and RNR2 are also elevated, suggesting that all three RNR genes share a common regulatory pathway. Mutations in most CRT genes confer additional phenotypes, among these are clumpiness, hydroxyurea sensitivity, temperature sensitivity and slow growth. Five of the CRT genes have been identified as previously cloned genes; CRT4 is TUP1, CRT5 is POL1/CDC17, CRT6 is RNR2, CRT7 is RNR1, and CRT8 is SSN6. crt6-68 and crt7-240 are the first ts alleles of RNR2 and RNR1, respectively, and arrest with a large budded, cdc terminal phenotype at the nonpermissive temperature. The isolation of crt5-262, an additional cdc allele of POL1/CDC17, suggests for the first time that directly blocking DNA replication can provide a signal to induce the DNA damage response. crt2 mutants show a defect in basal level expression of RNR1-lacZ reporter constructs. These are the first mutants isolated in yeast that alter the regulation of DNA damage inducible genes and the identification of their functions sheds light on the DNA damage sensory network.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3