Abstract
Abstract
Eight complementation groups have been defined for recessive mutations conferring an increased mitotic intrachromosomal recombination phenotype (hpr genes) in Saccharomyces cerevisiae. Some of the mutations preferentially increase intrachromosomal gene conversion (hpr4, hpr5 and hpr8) between repeated sequences, some increase loss of a marker between duplicated genes (hpr1 and hpr6), and some increase both types of events (hpr2, hpr3 and hpr7). New alleles of the CDC2 and CDC17 genes were recovered among these mutants. The mutants were also characterized for sensitivity to DNA damaging agents and for mutator activity. Among the more interesting mutants are hpr5, which shows a biased gene conversion in a leu2-112::URA3::leu2-k duplication; and hpr1, which has a much weaker effect on interchromosomal mitotic recombination than on intrachromosomal mitotic recombination. These analyses suggest that gene conversion and reciprocal exchange can be separated mutationally. Further studies are required to show whether different recombination pathways or different outcomes of the same recombination pathway are controlled by the genes identified in this study.
Publisher
Oxford University Press (OUP)
Cited by
144 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献