Rad54 and Rdh54 prevent Srs2-mediated disruption of Rad51 presynaptic filaments

Author:

Meir Aviv1,Crickard J. Brooks1,Kwon Youngho2,Sung Patrick2,Greene Eric C.1

Affiliation:

1. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032

2. Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229

Abstract

Significance Homologous DNA recombination is an essential pathway necessary for the repair of double-stranded DNA breaks. Defects in this pathway are associated with hereditary breast cancer, ovarian cancer, and cancer-prone syndromes. Although essential, too much recombination is also bad and can lead to genetic mutations. Thus, cells have evolved “antirecombinase” enzymes that can actively dismantle recombination intermediates to prevent excessive recombination. However, our current understanding of how antirecombinases are themselves regulated remains very limited. Here, we study the antirecombinase Srs2 and its regulation by the recombination accessory factors Rad54 and Rdh54. Our data suggest that Rad54 and Rdh54 act synergistically to function as key regulators of Srs2, thus serving as “licensing factors” that enable timely progression of DNA repair.

Funder

HHS | National Institutes of Health

Damon Runyon Cancer Research Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3