Maximum-Likelihood Estimation Using the Zig-Zag Algorithm

Author:

Hautsch Nikolaus1ORCID,Okhrin Ostap2,Ristig Alexander3

Affiliation:

1. University of Vienna , Austria

2. Technische Universität Dresden , Germany

3. Independent author

Abstract

Abstract We analyze the properties of the Maximum Likelihood (ML) estimator when the underlying log-likelihood function is numerically maximized with the so-called zig-zag algorithm. By splitting the parameter vector into sub-vectors, the algorithm maximizes the log-likelihood function alternatingly with respect to one sub-vector while keeping the others constant. For situations when the algorithm is initialized with a consistent estimator and is iterated sufficiently often, we establish the asymptotic equivalence of the zig-zag estimator and the “infeasible” ML estimator being numerically approximated. This result gives guidance for practical implementations. We illustrate how to employ the algorithm in different estimation problems, such as in a vine copula model and a vector autoregressive moving average model. The accuracy of the estimator is illustrated through simulations. Finally, we demonstrate the usefulness of our results in an application, where the Bitcoin heating 2017 is analyzed by a dynamic conditional correlation model.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance

Reference45 articles.

1. Pair-Copula Constructions of Multiple Dependence;Aas;Insurance: Mathematics and Economics,2009

2. Dynamic Conditional Correlation: On Properties and Estimation;Aielli;Journal of Business & Economic Statistics,2013

3. Numerical Analysis for Applied Science

4. Nonlinear Least Squares and Maximum Likelihood Estimation of a Heteroscedastic Regression Model;Anh;Stochastic Processes and Their Applications,1988

5. Bitcoins as an Investment or Speculative Vehicle? A First Look;Baek;Applied Economics Letters,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3