The vector error correction index model: representation, estimation and identification

Author:

Cubadda Gianluca1,Mazzali Marco2

Affiliation:

1. Tor Vergata University of Rome, Centre for Economic and International Studies , Via Columbia 2, 00133 Roma , Italy

2. Tor Vergata University of Rome, Department of Economics and Finance , Via Columbia 2, 00133 Roma , Italy

Abstract

Summary This paper extends the multivariate index autoregressive model to the case of cointegrated time series of order (1,1). In this new modelling, namely the vector error-correction index model (VECIM), the first differences of series are driven by some linear combinations of the variables, namely the indexes. When the indexes are significantly fewer than the variables, the VECIM achieves a substantial dimension reduction with reference to the vector error correction model. We show that the VECIM allows one to decompose the reduced-form errors into sets of common and uncommon shocks, and that the former can be further decomposed into permanent and transitory shocks. Moreover, we offer a switching algorithm for optimal estimation of the VECIM. Finally, we document the practical value of the proposed approach by both simulations and an empirical application, where we search for the shocks that drive the aggregate fluctuations at different frequency bands in the US.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics

Reference60 articles.

1. Business-cycle anatomy;Angeletos;American Economic Review,2020

2. The main business cycle shock(s): Frequency-band estimation of the number of dynamic factors;Avarucci;CEPR Press Discussion Paper,2022

3. Estimating cross-section common stochastic trends in nonstationary panel data;Bai;Journal of Econometrics,2004

4. A PANIC attack on unit roots and cointegration;Bai;Econometrica,2004

5. Large Bayesian vector auto regressions;Bańbura;Journal of Applied Econometrics,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The time-varying Multivariate Autoregressive Index model;International Journal of Forecasting;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3