A splice site mutation in the FvePHP gene is associated with leaf development and flowering time in woodland strawberry

Author:

Wang Baotian12,Li Weijia123,Xu Kexin12,Lei Yingying12,Zhao Di4,Li Xue12,Zhang Junxiang12,Zhang Zhihong124

Affiliation:

1. Shenyang Agricultural University Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, , Shenyang, 110866, China

2. Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education , Shenyang, People’s Republic of China

3. Shanxi Datong University Institute of Carbon Materials Science, , Datong, 037009, China

4. Shenyang Agricultural University Analytical and Testing Center, , Shenyang, 110866, China

Abstract

Abstract Leaves and flowers are crucial for the growth and development of higher plants. In this study we identified a mutant with narrow leaflets and early flowering (nlef) in an ethyl methanesulfonate-mutagenized population of woodland strawberry (Fragaria vesca) and aimed to identify the candidate gene. Genetic analysis revealed that a single recessive gene, nlef, controlled the mutant phenotype. We found that FvH4_1g25470, which encodes a putative DNA polymerase α with a polymerase and histidinol phosphatase domain (PHP), might be the candidate gene, using bulked segregant analysis with whole-genome sequencing, molecular markers, and cloning analyses. A splice donor site mutation (C to T) at the 5′ end of the second intron led to an erroneous splice event that reduced the expression level of the full-length transcript of FvePHP in mutant plants. FvePHP was localized in the nucleus and was highly expressed in leaves. Silencing of FvePHP using the virus-induced gene silencing method resulted in partial developmental defects in strawberry leaves. Overexpression of the FvePHP gene can largely restore the mutant phenotype. The expression levels of FveSEP1, FveSEP3, FveAP1, FveFUL, and FveFT were higher in the mutants than those in ‘Yellow Wonder’ plants, probably contributing to the early flowering phenotype in mutant plants. Our results indicate that mutation in FvePHP is associated with multiple developmental pathways. These results aid in understanding the role of DNA polymerase in strawberry development.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3