Combined effects of temperature and humidity on the interaction between tomato and Botrytis cinerea revealed by integration of histological characteristics and transcriptome sequencing

Author:

Li Tianzhu1ORCID,Zhou Jie1,Li Jianming1

Affiliation:

1. Northwest Agricultural and Forestry University College of Horticulture, , Yangling 712100, China

Abstract

Abstract The environment significantly impacts the interaction between plants and pathogens, thus remarkably affecting crop disease occurrence. However, the detailed combined mechanisms of temperature and humidity influencing this interaction remain unclear. In this study, the interaction between tomato and Botrytis cinerea in various temperature and humidity conditions was analyzed by histological observation and a dual RNA-seq approach. Results showed that low humidity was not favorable for mycelial growth, resulting in infection failure. Both high and low temperatures at high humidity successfully inhibited pathogenic infection and disease incidence in the tomato plants, thus enhancing their resistance to B. cinerea. The high temperature and high humidity (HH) treatment induced the upregulation of light reaction genes, increased the net photosynthetic rate, and expanded the chloroplast morphology of infected tomatoes. The HH treatment also inhibited the expression of cell cycle-related genes of B. cinerea, interfered with conidial germination and mycelial growth, and damaged mycelial cell structure. Low temperature and high humidity (LH) treatment induced the expression of cell wall modification genes and remodeled the cell wall morphology of tomatoes in response to B. cinerea. In addition, the downregulated fungal catabolic genes and the abnormal increase in electron density of mycelial cells under LH treatment subsequently reduced the infection ability of B. cinerea. These results further explain the coupled effects of temperature and humidity on plant defenses and pathogen virulence, and provide a potential means to control gray mold.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3