Resequencing worldwide spinach germplasm for identification of field resistance QTLs to downy mildew and assessment of genomic selection methods

Author:

Bhattarai Gehendra1,Shi Ainong1,Mou Beiquan2,Correll James C3

Affiliation:

1. University of Arkansas Department of Horticulture, , Fayetteville, AR 72701, USA

2. USDA-ARS, Crop Improvement and Protection Research Unit , Salinas, CA, 93905, USA

3. University of Arkansas Department of Entomology and Plant Pathology, , Fayetteville, AR 72701, USA

Abstract

Abstract Downy mildew, commercially the most important disease of spinach, is caused by the obligate oomycete Peronospora effusa. In the past two decades, new pathogen races have repeatedly overcome the resistance used in newly released cultivars, urging the need for more durable resistance. Commercial spinach cultivars are bred with major R genes to impart resistance to downy mildew pathogens and are effective against some pathogen races/isolates. This work aimed to evaluate the worldwide USDA spinach germplasm collections and commercial cultivars for resistance to downy mildew pathogen in the field condition under natural inoculum pressure and conduct genome wide association analysis (GWAS) to identify resistance-associated genomic regions (alleles). Another objective was to evaluate the prediction accuracy (PA) using several genomic prediction (GP) methods to assess the potential implementation of genomic selection (GS) to improve spinach breeding for resistance to downy mildew pathogen. More than four hundred diverse spinach genotypes comprising USDA germplasm accessions and commercial cultivars were evaluated for resistance to downy mildew pathogen between 2017–2019 in Salinas Valley, California and Yuma, Arizona. GWAS was performed using single nucleotide polymorphism (SNP) markers identified via whole genome resequencing (WGR) in GAPIT and TASSEL programs; detected 14, 12, 5, and 10 significantly associated SNP markers with the resistance from four tested environments, respectively; and the QTL alleles were detected at the previously reported region of chromosome 3 in three of the four experiments. In parallel, PA was assessed using six GP models and seven unique marker datasets for field resistance to downy mildew pathogen across four tested environments. The results suggest the suitability of GS to improve field resistance to downy mildew pathogen. The QTL, SNP markers, and PA estimates provide new information in spinach breeding to select resistant plants and breeding lines through marker-assisted selection (MAS) and GS, eventually helping to accumulate beneficial alleles for durable disease resistance.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3