The transcriptional coactivator CmMBF1c is required for waterlogging tolerance in Chrysanthemum morifolium

Author:

Zhao Nan1,Li Chuanwei1,Yan Yajun1,Wang Haibin1,Wang Likai1,Jiang Jiafu1,Chen Sumei1,Chen Fadi1

Affiliation:

1. Nanjing Agricultural University State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, , 210095 Nanjing, China

Abstract

Abstract Waterlogging is one of the most serious abiotic stressors affecting Chrysanthemum morifolium during its lifespan. However, the molecular mechanisms underlying the waterlogging tolerance of chrysanthemum remain unclear. In this study, we discovered that the transcriptional coactivator MULTIPROTEIN BRIDGING FACTOR 1c (CmMBF1c) was significantly induced by waterlogging stress in chrysanthemums. Promoter sequence analysis and transient dual-luciferase assay using chrysanthemum protoplasts showed that the waterlogging-tolerant cultivar ‘Nannongxuefeng’ carried more response elements involved in waterlogging and hypoxia stress compared with the waterlogging-sensitive cultivar ‘Qinglu’, conferring on ‘Nannongxuefeng’ a stronger hypoxia responsive activity and higher CmMBF1c expression under waterlogging conditions. Subcellular localization and transcriptional activity assays showed that CmMBF1c protein was localized to the nucleus and had no transcriptional activation activity. Overexpression of CmMBF1c in ‘Qinglu’ enhanced its waterlogging tolerance by promoting its reactive oxygen species (ROS) scavenging ability and maintaining low ROS levels. However, RNAi-mediated knockdown of CmMBF1c in cultivar ‘Nannongxuefeng’ resulted in the opposite tendency. Yeast two-hybrid screening and tobacco bimolecular fluorescence complementation assays revealed that CmHRE2, a pivotal regulator of hypoxia response, could interact with CmMBF1c. In summary, this study demonstrates that CmMBF1c improves chrysanthemum waterlogging tolerance by regulating its ROS signaling pathway and interacting with CmHRE2. These findings together offer, to our knowledge, new mechanistic insights into chrysanthemum waterlogging tolerance and provide a rational foundation for future research on the genetic improvement of horticultural crops for waterlogging stress tolerance.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3