Reduced γ-glutamyl hydrolase activity likely contributes to high folate levels in Periyakulam-1 tomato

Author:

Tyagi Kamal1,Sunkum Anusha1,Gupta Prateek1,Kilambi Himabindu Vasuki1,Sreelakshmi Yellamaraju1,Sharma Rameshwar1

Affiliation:

1. University of Hyderabad Repository of Tomato Genomics Resources, Department of Plant Sciences, , Hyderabad-500046, India

Abstract

Abstract Tomato cultivars show wide variation in nutraceutical folate in ripe fruits, yet the loci regulating folate levels in fruits remain unexplored. To decipher regulatory points, we compared two contrasting tomato cultivars: Periyakulam-1 (PKM-1) with high folate and Arka Vikas (AV) with low folate. The progression of ripening in PKM-1 was nearly similar to AV but had substantially lower ethylene emission. In parallel, the levels of phytohormones salicylic acid, ABA, and jasmonic acid were substantially lower than AV. The fruits of PKM-1 were metabolically distinct from AV, with upregulation of several amino acids. Consistent with higher °Brix, the red ripe fruits also showed upregulation of sugars and sugar-derived metabolites. In parallel with higher folate, PKM-1 fruits also had higher carotenoid levels, especially lycopene and β-carotene. The proteome analysis showed upregulation of carotenoid sequestration and folate metabolism-related proteins in PKM-1. The deglutamylation pathway mediated by γ-glutamyl hydrolase (GGH) was substantially reduced in PKM-1 at the red-ripe stage. The red-ripe fruits had reduced transcript levels of GGHs and lower GGH activity than AV. Conversely, the percent polyglutamylation of folate was much higher in PKM-1. Our analysis indicates the regulation of GGH activity as a potential target to elevate folate levels in tomato fruits.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3