Local Analysis of Tree Competition and Growth

Author:

Shi Haijin1,Zhang Lianjun2

Affiliation:

1. 1Research Assistant Faculty of Forest and Natural Resources Management, College of Environmental Science and Forestry, State University of New York, One Forestry Drive, Syracuse, NY, 13210, Phone: 315-426-0290

2. 2Associate Professor of Forest Biometrics Faculty of Forest and Natural Resources Management, College of Environmental Science and Forestry, State University of New York, One Forestry Drive, Syracuse, NY, 13210, Phone: 315-470-6558, Fax: 315-470-65

Abstract

Abstract The relationships between the Local Indicator of Spatial Association (LISA) and traditional tree competition indices and individual tree growth were investigated. The results show that like most of the competition indices, LISA had moderate correlations with tree basal area growth. For predicting the tree basal area growth in a linear regression model, the local Gi performed better than many (73%) competition indices at a plot aggregation level and had higher explanatory power than most (91%) competition indices at an individual plot level. LISA also had linear and strong relationships with some traditional competition indices, such as the Lorimer index. The relationships were stronger (ρ >0.90) at an individual plot level than for all plots combined (ρ>0.75). More importantly, LISA could be statistically tested to identify local clusters of trees of similar or dissimilar sizes, even though there was no discernible pattern as summarized by a global statistic of spatial autocorrelation. These significant “hot spots” (clusters of trees of similar sizes) or “cold spots” (clusters of trees of dissimilar sizes) indicated subareas in a forest stand where the competition among trees may be more severe than the average. Therefore, LISA can replace the traditional competition indices for exploring the competitive status of neighboring trees, investigating the relationships between tree competition and growth, and estimating individual tree growth as a predictor variable in a forest growth simulator. The hot spots or cold spots identified by LISA provide useful information for the design of silvicultural and management treatments, such as selection thinning. Furthermore, LISA can be readily incorporated into visualization tools, such as a geographic information system (GIS), because it provides georeferenced information at a local level.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3