Author:
Versace ,Gianelle ,Frizzera ,Tognetti ,Garfì ,Dalponte
Abstract
Competitive interactions are important predictors of tree growth. Spatial and temporal changes in resource availability, and variation in species and spatial patterning of trees alter competitive interactions, thus affecting tree growth and, hence, biomass. Competition indices are used to quantify the level of competition among trees. As these indices are normally computed only over small areas, where field measurements are done, it would be useful to have a tool to predict them over large areas. On this regard, remote sensing, and in particular light detection and ranging (lidar) data, could be the perfect tool. The objective of this study was to use lidar metrics to predict competition (on the basis of distance-dependent competition indices) of individual trees and to relate them with tree aboveground biomass (AGB). The selected study area was a mountain forest area located in the Italian Alps. The analyses focused on the two dominant species of the area: Silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) H. Karst). The results showed that lidar metrics could be used to predict competition indices of individual trees (R2 above 0.66). Moreover, AGB decreased as competition increased, suggesting that variations in the availability of resources in the soil, and the ability of plants to withstand competition for light may influence the partitioning of biomass.
Funder
Horizon 2020 Framework Programme
Subject
General Earth and Planetary Sciences
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献