A Comprehensive Overview of Unit-Level Modeling of Survey Data for Small Area Estimation Under Informative Sampling

Author:

Parker Paul A1,Janicki Ryan2,Holan Scott H3

Affiliation:

1. University of California Santa Cruz Assistant Professor in the Department of Statistics, , 1156 High St, Santa Cruz, CA 95064, USA

2. U.S. Census Bureau Principal Researcher in the , 4600 Silver Hill Road, Washington, DC 20233-9100, USA

3. University of Missouri Professor in the Department of Statistics, , 146 Middlebush Hall, Columbia, MO 65211-6100, USA and U.S. Census Bureau, 4600 Silver Hill Road, Washington, DC 20233-9100, USA

Abstract

Abstract Model-based small area estimation is frequently used in conjunction with survey data to establish estimates for under-sampled or unsampled geographies. These models can be specified at either the area-level, or the unit-level, but unit-level models often offer potential advantages such as more precise estimates and easy spatial aggregation. Nevertheless, relative to area-level models, literature on unit-level models is less prevalent. In modeling small areas at the unit level, challenges often arise as a consequence of the informative sampling mechanism used to collect the survey data. This article provides a comprehensive methodological review for unit-level models under informative sampling, with an emphasis on Bayesian approaches.

Funder

U.S. National Science Foundation

U.S. Census Bureau under NSF Grant

the NSF-Census Research Network (NCRN) program

NSF

the Missouri Research Data Center

the University of Missouri Population, Education and Health Center Doctoral Fellowship

U.S. Census Bureau Dissertation Fellowship Program

U.S. Census Bureau

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Social Sciences (miscellaneous),Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3