Nonlinear Fay-Herriot Models for Small Area Estimation Using Random Weight Neural Networks

Author:

Parker Paul A.1ORCID

Affiliation:

1. Department of Statistics, University of California Santa Cruz, Santa Cruz, CA, USA

Abstract

Small area estimation models are critical for dissemination and understanding of important population characteristics within sub-domains that often have limited sample size. The classic Fay-Herriot model is perhaps the most widely used approach to generate such estimates. However, a limiting assumption of this approach is that the latent true population quantity has a linear relationship with the given covariates. Through the use of random weight neural networks, we develop a Bayesian hierarchical extension of this framework that allows for estimation of nonlinear relationships between the true population quantity and the covariates. We illustrate our approach through an empirical simulation study as well as an analysis of median household income for census tracts in the state of California.

Publisher

SAGE Publications

Reference31 articles.

1. Bauder M., Luery D., Szelepka S. 2018. “Small Area Estimation of Health Insurance Coverage in 2010 – 2016.” Technical Report, Small Area Methods Branch, Social, Economic, and Housing Statistics Division, U. S. Census Bureau. Available at: https://www2.census.gov/programs-surveys/sahie/technical-documentation/methodology/2008-2016-methods/sahie-tech-2010-to-2016.pdf

2. An Overview of the U.S. Census Bureau's Small Area Income and Poverty Estimates Program

3. Random projection in dimensionality reduction

4. The horseshoe estimator for sparse signals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3