Plant Specialized Metabolism Regulated by Jasmonate Signaling

Author:

Chen Xueying123,Wang Dan-Dan123,Fang Xin4,Chen Xiao-Ya23,Mao Ying-Bo12ORCID

Affiliation:

1. CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China

2. National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China

3. School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China

4. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

Abstract

Abstract As sessile and autotrophic organisms, plants have evolved sophisticated pathways to produce a rich array of specialized metabolites, many of which are biologically active and function as defense substances in protecting plants from herbivores and pathogens. Upon stimuli, these structurally diverse small molecules may be synthesized or constitutively accumulated. Jasmonate acids (JAs) are the major defense phytohormone involved in transducing external signals (such as wounding) to activate defense reactions, including, in particular, the reprogramming of metabolic pathways that initiate and enhance the production of defense compounds against insect herbivores and pathogens. In this review, we summarize the progress of recent research on the control of specialized metabolic pathways in plants by JA signaling, with an emphasis on the molecular regulation of terpene and alkaloid biosynthesis. We also discuss the interplay between JA signaling and various signaling pathways during plant defense responses. These studies provide valuable data for breeding insect-proof crops and pave the way to engineering the production of valuable metabolites in future.

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

National Natural Sciences of China

Chinese Academy of Sciences

The Ministry of Agriculture of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3