Identification and Characterization of Apigenin 6-C-Glucosyltransferase Involved in Biosynthesis of Isosaponarin in Wasabi (Eutrema japonicum)

Author:

Mashima Kyoko1,Hatano Mayu1,Suzuki Hideyuki2,Shimosaka Makoto1,Taguchi Goro1ORCID

Affiliation:

1. Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, 386-8567 Japan

2. Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, 292-0818 Japan

Abstract

Abstract Wasabi (Eutrema japonicum) is a perennial plant native to Japan that is used as a spice because it contains isothiocyanates. It also contains an isosaponarin, 4′-O-glucosyl-6-C-glucosyl apigenin, in its leaves, which has received increasing attention in recent years for its bioactivity, such as its promotion of type-I collagen production. However, its biosynthetic enzymes have not been clarified. In this study, we partially purified a C-glucosyltransferase (CGT) involved in isosaponarin biosynthesis from wasabi leaves and identified the gene coding for it (WjGT1). The encoded protein was similar to UGT84 enzymes and was named UGT84A57. The recombinant enzyme of WjGT1 expressed in Escherichia coli showed C-glucosylation activity toward the 6-position of flavones such as apigenin and luteolin. The enzyme also showed significant activity toward flavonols, but trace or no activity toward flavone 4′-O-glucosides, suggesting that isosaponarin biosynthesis in wasabi plants would proceed by 6-C-glucosylation of apigenin, followed by its 4′-O-glucosylation. Interestingly, the enzyme showed no activity against sinapic acid or p-coumaric acid, which are usually the main substrates of UGT84 enzymes. The accumulation of WjGT1 transcripts was observed mainly in the leaves and flowers of wasabi, in which C-glucosylflavones were accumulated. Molecular phylogenetic analysis suggested that WjGT1 acquired C-glycosylation activity independently from other reported CGTs after the differentiation of the family Brassicaceae.

Funder

Japan Society for the Promotion of Science

JSPS

KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3