Affiliation:
1. Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, 386-8567 Japan
2. Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, 292-0818 Japan
Abstract
Abstract
Wasabi (Eutrema japonicum) is a perennial plant native to Japan that is used as a spice because it contains isothiocyanates. It also contains an isosaponarin, 4′-O-glucosyl-6-C-glucosyl apigenin, in its leaves, which has received increasing attention in recent years for its bioactivity, such as its promotion of type-I collagen production. However, its biosynthetic enzymes have not been clarified. In this study, we partially purified a C-glucosyltransferase (CGT) involved in isosaponarin biosynthesis from wasabi leaves and identified the gene coding for it (WjGT1). The encoded protein was similar to UGT84 enzymes and was named UGT84A57. The recombinant enzyme of WjGT1 expressed in Escherichia coli showed C-glucosylation activity toward the 6-position of flavones such as apigenin and luteolin. The enzyme also showed significant activity toward flavonols, but trace or no activity toward flavone 4′-O-glucosides, suggesting that isosaponarin biosynthesis in wasabi plants would proceed by 6-C-glucosylation of apigenin, followed by its 4′-O-glucosylation. Interestingly, the enzyme showed no activity against sinapic acid or p-coumaric acid, which are usually the main substrates of UGT84 enzymes. The accumulation of WjGT1 transcripts was observed mainly in the leaves and flowers of wasabi, in which C-glucosylflavones were accumulated. Molecular phylogenetic analysis suggested that WjGT1 acquired C-glycosylation activity independently from other reported CGTs after the differentiation of the family Brassicaceae.
Funder
Japan Society for the Promotion of Science
JSPS
KAKENHI
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Plant Science,Physiology,General Medicine
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献