Identification of novel heat shock-induced long non-coding RNA in human cells

Author:

Onoguchi-Mizutani Rena1,Kishi Yoshihiro1,Ogura Yoko1,Nishimura Yuuki12,Imamachi Naoto1,Suzuki Yutaka3,Miyazaki Satoru2,Akimitsu Nobuyoshi1

Affiliation:

1. Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

2. Department of Medical and Life Science, Faculty of Pharmaceutical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-8510, Japan

3. Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan

Abstract

Abstract The heat-shock response is a crucial system for survival of organisms under heat stress. During heat-shock stress, gene expression is globally suppressed, but expression of some genes, such as chaperone genes, is selectively promoted. These selectively activated genes have critical roles in the heat-shock response, so it is necessary to discover heat-inducible genes to reveal the overall heat-shock response picture. The expression profiling of heat-inducible protein-coding genes has been well-studied, but that of non-coding genes remains unclear in mammalian systems. Here, we used RNA-seq analysis of heat shock-treated A549 cells to identify seven novel long non-coding RNAs that responded to heat shock. We focussed on CTD-2377D24.6 RNA, which is most significantly induced by heat shock, and found that the promoter region of CTD-2377D24.6 contains the binding site for transcription factor HSF1 (heat shock factor 1), which plays a central role in the heat-shock response. We confirmed that HSF1 knockdown cancelled the induction of CTD-2377D24.6 RNA upon heat shock. These results suggest that CTD-2377D24.6 RNA is a novel heat shock-inducible transcript that is transcribed by HSF1.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3