Scatter Irradiation of Rat Brain Triggers Sex- and Brain Region-Specific Changes in the Expression of Non-Coding RNA Fragments

Author:

Fiselier Anna,Byeon Boseon,Ilnytskyy Yaroslav,Kovalchuk Olga,Kovalchuk IgorORCID

Abstract

Non-coding RNA fragments (ncRFs) are small RNA fragments processed from non-coding RNAs (ncRNAs). ncRFs have various functions and are commonly tissue-specific, and their processing is altered by exposure to stress. Information about ncRFs in the brain is scarce. Recently, we reported the brain region-specific and sex-specific expression of ncRNAs and their processing into ncRFs. Here, we analyzed the expression of ncRFs in the frontal cortex (FC), hippocampus (HIP), and cerebellum (CER) of male and female rats exposed to scatter radiation. We found multiple brain region- and sex-specific changes in response to scatter radiation. Specifically, we observed decreased miRNA expression and the increased expression of ra-ncRNA reads in HIP and CER, as well as an increased number of mtR-NA-associated reads in HIP. We also observed the appearance of sense-intronic ncRNAs—in females, in HIP and FC, and in males, in CER. In this work, we also show that tRNA-GlyGCC and tRNA-GlyCCC are most frequently processed to tRFs, in CER in females, as compared to males. An analysis of the targeted pathways revealed that tRFs and snoRFs in scatter radiation samples mapped to genes in several pathways associated with various neuronal functions. While in HIP and CER these pathways were underrepresented, in FC, they were overrepresented. Such changes may play an important role in pathologies that develop in response to scatter radiation, the effect known as “radio-brain”, and may in part explain the sex-specific differences observed in animals and humans exposed to radiation and scatter radiation.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Genetics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3