scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement

Author:

Guo Qirui12,Yuan Musu12,Zhang Lei12324,Deng Minghua125262

Affiliation:

1. Center for Quantitative Biology , , Yiheyuan Road, 100871, Beijing , China

2. Peking University , , Yiheyuan Road, 100871, Beijing , China

3. Beijing International Center for Mathematical Research , , Yiheyuan Road, 100871, Beijing , China

4. Center for Machine Learning Research , Peking University, Yiheyuan Road, 100871, Beijing , China

5. School of Mathematical Sciences , , Yiheyuan Road, 100871, Beijing , China

6. Center for Statistical Science , , Yiheyuan Road, 100871, Beijing , China

Abstract

Abstract Motivation In the past decade, single-cell RNA sequencing (scRNA-seq) has emerged as a pivotal method for transcriptomic profiling in biomedical research. Precise cell-type identification is crucial for subsequent analysis of single-cell data. And the integration and refinement of annotated data are essential for building comprehensive databases. However, prevailing annotation techniques often overlook the hierarchical organization of cell types, resulting in inconsistent annotations. Meanwhile, most existing integration approaches fail to integrate datasets with different annotation depths and none of them can enhance the labels of outdated data with lower annotation resolutions using more intricately annotated datasets or novel biological findings. Results Here, we introduce scPLAN, a hierarchical computational framework designed for scRNA-seq data analysis. scPLAN excels in annotating unlabeled scRNA-seq data using a reference dataset structured along a hierarchical cell-type tree. It identifies potential novel cell types in a systematic, layer-by-layer manner. Additionally, scPLAN effectively integrates annotated scRNA-seq datasets with varying levels of annotation depth, ensuring consistent refinement of cell-type labels across datasets with lower resolutions. Through extensive annotation and novel cell detection experiments, scPLAN has demonstrated its efficacy. Two case studies have been conducted to showcase how scPLAN integrates datasets with diverse cell-type label resolutions and refine their cell-type labels. Availability https://github.com/michaelGuo1204/scPLAN

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3