Introducing π-HelixNovo for practical large-scale de novo peptide sequencing

Author:

Yang Tingpeng12,Ling Tianze345,Sun Boyan67,Liang Zhendong12,Xu Fan1,Huang Xiansong1,Xie Linhai67,He Yonghong12,Li Leyuan67,He Fuchu678,Wang Yu1,Chang Cheng678

Affiliation:

1. Peng Cheng Laboratory , Shenzhen, 518055 , China

2. Tsinghua Shenzhen International Graduate School , Shenzhen, 518055 , China

3. State Key Laboratory of Medical Proteomics , Beijing Proteome Research Center, , Beijing, 102206 , China

4. National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics , Beijing Proteome Research Center, , Beijing, 102206 , China

5. School of Life Sciences, Tsinghua University , Beijing 100084 , China

6. State Key Laboratory of Medical Proteomics , Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), , Beijing, 102206 , China

7. Beijing Institute of Lifeomics , Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), , Beijing, 102206 , China

8. Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences , Beijing 102206 , China

Abstract

Abstract De novo peptide sequencing is a promising approach for novel peptide discovery, highlighting the performance improvements for the state-of-the-art models. The quality of mass spectra often varies due to unexpected missing of certain ions, presenting a significant challenge in de novo peptide sequencing. Here, we use a novel concept of complementary spectra to enhance ion information of the experimental spectrum and demonstrate it through conceptual and practical analyses. Afterward, we design suitable encoders to encode the experimental spectrum and the corresponding complementary spectrum and propose a de novo sequencing model $\pi$-HelixNovo based on the Transformer architecture. We first demonstrated that $\pi$-HelixNovo outperforms other state-of-the-art models using a series of comparative experiments. Then, we utilized $\pi$-HelixNovo to de novo gut metaproteome peptides for the first time. The results show $\pi$-HelixNovo increases the identification coverage and accuracy of gut metaproteome and enhances the taxonomic resolution of gut metaproteome. We finally trained a powerful $\pi$-HelixNovo utilizing a larger training dataset, and as expected, $\pi$-HelixNovo achieves unprecedented performance, even for peptide-spectrum matches with never-before-seen peptide sequences. We also use the powerful $\pi$-HelixNovo to identify antibody peptides and multi-enzyme cleavage peptides, and $\pi$-HelixNovo is highly robust in these applications. Our results demonstrate the effectivity of the complementary spectrum and take a significant step forward in de novo peptide sequencing.

Funder

Chinese Ministry of Technology to Peng Cheng Laboratory

National Key Research and Development Program of China

Research and Development Program of Guangzhou Laboratory

National Natural Science Foundation of China

CAMS Innovation Fund for Medical Sciences

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3