A transformer model forde novosequencing of data-independent acquisition mass spectrometry data

Author:

Sanders Justin,Wen Bo,Rudnick Paul,Johnson Rich,Wu Christine C.,Oh Sewoong,MacCoss Michael J.ORCID,Noble William StaffordORCID

Abstract

AbstractA core computational challenge in the analysis of mass spectrometry data is thede novosequencing problem, in which the generating amino acid sequence is inferred directly from an observed fragmentation spectrum without the use of a sequence database. Recently, deep learning models have made significant advances inde novosequencing by learning from massive datasets of high-confidence labeled mass spectra. However, these methods are primarily designed for data-dependent acquisition (DDA) experiments. Over the past decade, the field of mass spectrometry has been moving toward using data-independent acquisition (DIA) protocols for the analysis of complex proteomic samples due to their superior specificity and reproducibility. Hence, we present a newde novosequencing model called Cascadia, which uses a transformer architecture to handle the more complex data generated by DIA protocols. In comparisons with existing approaches forde novosequencing of DIA data, Cascadia achieves state-of-the-art performance across a range of instruments and experimental protocols. Additionally, we demonstrate Cascadia’s ability to accurately discoverde novocoding variants and peptides from the variable region of antibodies.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. Ng, C. C. A. ; Zhou, Y. ; Yao, Z.-P. Algorithms for de-novo sequencing of peptides by tandem mass spectrometry: A review. Analytica Chimica Acta 2023, 341330.

2. Yilmaz, M. ; Fondrie, W. E. ; Bittremieux, W. ; Oh, S. ; Noble, W. S. In Proceedings of the International Conference on Machine Learning, 2022, pp 25514–25522.

3. DPST: de novo peptide sequencing with amino-acid-aware transformers;arXiv preprint,2022

4. Contra-Novo: A Contrastive Learning Approach to Enhance De Novo Peptide Sequencing;arXiv preprint,2023

5. Mao, Z. ; Zhang, R. ; Xin, L. ; Li, M. Mitigating the missing fragmentation problem in de novo peptide sequencing with a two stage graph-based deep learning model. Nature Machine Intelligence 2023, 5.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3