Determining the primes of bad reduction of cm curves of genus 3

Author:

Ionica Sorina1234567,KılıÇer Pınar1234567,Lauter Kristin1234567,Lorenzo GarcíA Elisa1234587ORCID,MÂnzĂŢeanu Adelina1234587,Vincent Christelle1234567

Affiliation:

1. Laboratoire MIS, Université de Picardie Jules Verne , 33 Rue Saint Leu, Amiens 80039, France

2. Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence , 9747 AG Groningen, The Netherlands

3. Facebook AI Research, Meta, Seattle, WA, USA

4. Institut de Mathématiques, Université de Neuchâtel , Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland

5. Laboratoire IRMAR, Office 602, Université de Rennes 1 , Campus de Beaulieu, 35042, Rennes Cedex, France

6. Mathematics Institut, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

7. Department of Mathematics and Statistics, University of Vermont , 82 University Place, Burlington VT 054015, Vermont

8. Mathematics Institut , Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Abstract

Abstract In this paper, we introduce a new problem called the Isogenous Embedding Problem (IEP) and relate the existence of solutions to this problem to the primes of bad reduction of complex multiplication curves of genus 3. More precisely, the absence of solutions to IEP implies potentially good reduction. We propose an algorithm for computing the solutions to the IEP and run the algorithm through different families of curves. Using this algorithm, we were able to prove the reduction type of some particular curves at certain primes that were open cases in R. Lercier, Q. Liu, E. Lorenzo García and C. Ritzenthaler, Reduction type of smooth plane quartics, Algebra Number Theory  15 no. 6 2021, 1429–1468.

Publisher

Oxford University Press (OUP)

Reference45 articles.

1. Constructing Picard curves with complex multiplication using the Chinese remainder theorem;Arora,2019

2. Constructing genus-3 hyperelliptic Jacobians with CM;Balakrishnan;LMS J. Comput. Math.,2016

3. Constructing elliptic curves with prescribed embedding degrees;Barreto,2003

4. Computing Hilbert Class Polynomials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3