Author:
Balakrishnan Jennifer S.,Ionica Sorina,Lauter Kristin,Vincent Christelle
Abstract
Given a sextic CM field $K$, we give an explicit method for finding all genus-$3$ hyperelliptic curves defined over $\mathbb{C}$ whose Jacobians are simple and have complex multiplication by the maximal order of this field, via an approximation of their Rosenhain invariants. Building on the work of Weng [J. Ramanujan Math. Soc. 16 (2001) no. 4, 339–372], we give an algorithm which works in complete generality, for any CM sextic field $K$, and computes minimal polynomials of the Rosenhain invariants for any period matrix of the Jacobian. This algorithm can be used to generate genus-3 hyperelliptic curves over a finite field $\mathbb{F}_{p}$ with a given zeta function by finding roots of the Rosenhain minimal polynomials modulo $p$.
Subject
Computational Theory and Mathematics,General Mathematics
Reference27 articles.
1. 21. A.-M. Spallek , ‘Kurven von Geschlecht 2 und ihre Anwendung in Public Key Kryptosystemen’, PhD Thesis, Institut für Experimentelle Mathematik, Universität GH Essen, 1994.
2. The hyperelliptic locus
3. 4. R. Cosset , ‘Applications des fonctions thêta à la cryptographie sur les courbes hyperelliptiques’, PhD Thesis, Université Henri Poincaré – Nancy I, 2011.
4. Explizite Bestimmung der Randfl�chen des Fundamentalbereiches der Modulgruppe zweiten Grades
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献